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Scaling properties of maximally compact chains
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San Francisco, California 94118
~Received 12 November 1998!

Scaling of the exact function for the number of intramolecular nonbonded contacts in a single maximally
compact linear homopolymer on hypercubic lattices is determined as a function of numberN of monomers and
dimensiond. A representative maximally compact structure is designed and an exact recursive expression for
the maximum numbermmax of contacts is derived from that design. The equivalent nonrecursive expression
yields the asymptotic scaling ofmmax as (d21)N2dND11, with D5(d21)/d. Implications in polymer and
protein studies are discussed.@S1063-651X~99!12405-X#

PACS number~s!: 05.50.1q
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I. INTRODUCTION

Understanding the fundamental properties of macrom
ecules has led to advances in catalysis, drug design, and
manufacturing. Advances in these areas have been aide
part by lattice models, whose simple microscopic desc
tions facilitate connections between molecular structure
fundamental physical properties@1,2#. For example, struc-
tural information about the equilibrium conformations
single lattice chains~representing proteins! can be extracted
at worst, by exhaustive enumeration. The lattice represe
tion of chains reduces the continuum of conformations do
to an enumerable number of conformations, with the lowe
energy conformations readily identifiable. These lowest
ergy conformations are typically assumed to represent
equilibrium state conformations under chain collapse con
tions. Properties of pathways to these lowest energy con
mations, including the location of kinetic traps, can be d
cerned@3# and the thermodynamics of the system can
calculated exactly@4#. Despite the multiple uses of lattic
models, the physics of single lattice chains is still inco
pletely understood@2,5–11#.

One of the unsolved problems involving single latti
chains is how many contacts are present in structures
the maximum numbermmax of contacts and how this numbe
scales with both the numberN of monomers and the dimen
sion d of the lattice. The solution to this problem has mu
tiple applications. For example, the exact form formmax may
help determine the scaling of the free energy for comp
lattice chains@12# and serves as an upper bound on the ma
mum number of contacts possible in random copolyme
although tight bounds have been independently develo
for this case@13#. Further, knowing the number of contac
in the most compact state helps determine the speed
frequency with which equilibrium conformations of poly
mers in poor solvents are sampled by Monte Carlo te
niques.

The exact formulas and asymptotic scaling properties
mmax, however, are incompletely determined. Chan and D
@14,15# postulate formulas formmax whend5123 on cubic
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lattices, but the scaling properties are not readily extracta
On the other hand, Douglas and Ishinabe@5# propose an
asymptotic scaling ofmmax with N andd. In developing this
scaling, they define an optimized walk on hypercubic lattic
as a representative self-avoiding walk~SAW! ~i.e., a repre-
sentative lattice chain! which makes mmax nonbonded
nearest-neighbor contacts for a linear homopolymer ch
containingN monomers ind dimensions. Proving the exis
tence of these optimized walks is tantamount to determin
the exact form formmax, and hence its scaling propertie
with N andd. Douglas and Ishinabe derive an exact expr
sion for mmax in d52, and a tight upper bound ind53.
Nevertheless, the differences between the exact expressi
d52 and their general asymptotic expression makes con
mation of their postulated scaling difficult. Therefore, dev
oping an asymptotic scaling function formmax requires sys-
tematically constructing an optimized walk.

This work constructs an optimized walk in arbitrary d
mensions and determines the asymptotic scaling behavio
mmax. Section II describes the construction of an optimiz
walk. Section II A establishes the fact that hypercubic co
formations and certain hyperrectangular conformations m
be obtained by an optimized walk. In establishing these c
formations, tools are developed which severely restrict
number of alternative conformations to an optimized wa
Section II B details a putative construction of the optimiz
walk ~the cross-back spiral! and Sec. II C proves that th
construction in Sec. II B is valid by determining that the fe
possible alternative structures have at best an equal num
of contacts. Section III provides recursive~Sec. III A! and
nonrecursive~Sec. III B! forms for mmax based on the con
struction in Sec. II. These results confirm the previously s
gested@5# scaling of mmax with N and d, as well as the
formulas formmax in d5123 dimensions@14,15#.

II. THE ‘‘OPTIMIZED’’ HAMILTON WALK

Many polymer simulations and models represent polym
chains as self-avoiding walks. The chain is constructed i
stepwise fashion. One end is placed, without loss of gen
ality, at the origin. A step, usually of fixed length, is taken
an arbitrary direction, with the end point of the step dema
5839 ©1999 The American Physical Society
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5840 PRE 59K. W. FOREMAN
ing the location of the next monomer in the polymer~pro-
vided the end point does not coincide with a previou
placed monomer!. This step and place routine is repeat
until all monomers are assigned locations. For the lat
model considered here, each step length is exactly the
tance between nearest-neighbor lattice sites and each
can fall only along one ofz lattice directions. Thus, ever
monomer occupies a lattice site, with consecutive monom
in the polymer lying on adjacent lattice sites. To make
walk self-avoiding, each lattice site contains at most o
monomer. This paper considers only hypercubic lattices
which the numberz of nearest neighbors is twice the dime
siond. Two nonbonded monomers form a contact when th
are nearest neighbors. Although bonded monomers are a
cent, they are excluded when counting contacts since
chain configuration will always incur these ‘‘contacts
Thus, the terminal and interior monomers in a chain o
hypercubic lattice make at mostz21 and z22 contacts,
respectively ~a contact in every direction except alon
bonded ‘‘contacts’’!.

The optimized walk is defined@5# as a representativ
SAW which, for any numberN of monomers ind dimen-
sions, makes the maximum numbermmax(N,d) of contacts for
a ~linear! lattice polymer chain. This definition implies tha
for all optimized walks in dimensiond with N>k.0 mono-
mers, the firstk monomers are always placed inexactlythe
same configuration. For example, in two dimensions, a sp
is an optimized walk@see Fig. 1~a!#. The construction below
systematically creates an optimized walk and derives an
act formula formmax(N,d).

A. Required chain configurations

Before constructing an optimized walk, it is helpful
consider which configurations that walk must pass throu
Douglas and Ishinabe@5# find that an optimized walk with
N5nd ~n, an integer! monomers fills ad-dimensional hyper-
cube with side of lengthn monomers. This section estab
lishes their finding as a special case of the proof that
optimized walk withN5nd2 i(n11)i (0< i ,d) monomers
must fill a hyperrectangle withd2 i sides of lengthn mono-
mers and withi sides of lengthn11 monomers.

This proof is simplified by a lemma that establishes
relationship between the maximum number of contacts p
sible for a configuration and the minimal bounding hyp
rectangle for that configuration. A minimal bounding hype
rectangle is the smallest hyperrectangle which comple
contains a configuration. These hyperrectangles must e
for configurations with a finite number of monomers sin
the configuration has finite extent in each of thed dimen-
sions. Intuitively, minimal bounding hyperrectangles w
larger volumes contain configurations with fewer possi
contacts, providedN remains constant. To make this measu
quantitative, consider the general properties of any confi
ration with N monomers. No more thanzN/25dN contacts
are possible since each monomer has at mostz nearest neigh-
bors. The factor of 2 in this upper bound prevents dou
counting of each contact between pairs of monomers. C
recting this upper bound for theN21 bonds between mono
mers yields a better upper bound on the number of cont
as
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~d21!N11, ~2.1!

regardless of the configuration. The maximum number
contacts for any configuration withN monomers is less than
in Eq. ~2.1! since some monomers are incompletely s
rounded by other monomers, i.e., they lie on an expo
surface.

Consider anN monomer configuration with the smalle
surface area for a minimal bounding hyperrectangle w
sides of lengthl 1 ,l 2 ,...,l d . Construct a second configuratio
from the first with a minimal bounding hyperrectangle
dimensionsl 1 ,l 2 ,...,l i11,..,l d by moving only one mono-
mer in the first configuration. The moved monomer must
on a (d21)-dimensional surface on which no other mon
mers are present, thus exposing all faces in thed21 dimen-
sions. If the moved monomer makes more contacts in
second structure, the moved monomer cannot be boun
any other in the original ‘‘configuration,’’ an impossibility
Thus, increasing the volume of the minimum bounding h
perrectangle while keepingN constant does not permit a
increase in the maximum possible number of contacts, p
vided that the structure in the starting configuration has
smallest surface area possible for the first bounding hyp
rectangle. Therefore, minimization of the surface area

FIG. 1. A cross-back spiral with~a! N59 monomers ind52
dimensions and~b! N527 monomers ind53 dimensions. Both
spirals begin in the lower left corner and the arrows indicate
order of monomer placement. The spiral in~a! @~b!# proceeds from
one square@cubic# configuration to another~at N51, 4, and 9@1, 8,
and 27# monomers! while passing through~nearly square! rectan-
gular configurations~at N52 and 6@2, 4, 12, and 18# monomers!.
To generate a cross-back spiral with fewer monomers, simply
low the arrows until the desired number of monomers has b
reached. Note that the final nine monomers of the cross-back s
in ~b! are arranged exactly like the monomers in~a!.
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configurations which fit into the smallest minimum boundi
hyperrectangle yields the maximum number of contacts.

It is proven here that whenN5(n11)d2 ini , 0< i<d, the
smallest minimum bounding hyperrectangle has sides id
2 i dimensions of lengthn11 units and sides in the remain
ing i dimensions of lengthn units. Assume that an alternativ
configuration also hasN monomers, but that two of the di
mensions for the bounding hyperrectangle have b
changed. If a better bounding hyperrectangle exists, m
than two dimensions may change, but this pairwise proc
may be repeated until no further benefit is obtained. Now
two side lengths that changed may beA! both in the direc-
tions initially with eithern11 monomers orn monomers or
B! one along a side initially withn monomers and the othe
along a side initially withn11 monomers.

If the two edges to be changed are initially of the sa
length t (5n or n11), then the new bounding edges ha
lengthst1a and t2b, a, b>0, b,t. Since a smaller tota
surface area for the bounding hyperrectangle is desired
area of the original square is required to be greater than
corresponding area of the new rectangle

t2>~ t1a!~ t2b!. ~2.2!

The total volume of the new hyperrectangle cannot be
than that of the original, since not all of the monomers wo
fit in the new hyperrectangle otherwise. This restricti
forces the equality to hold in Eq.~2.2!. Algebraic rearrange-
ment of Eq.~2.2! gives

ab

t
5~a2b!>0, ~2.3!

where the inequality in Eq.~2.3! is permitted sinceab/t is
non-negative. For the new hyperrectangle to have a sm
surface area, it must have a net loss in total length of the
changed sides. This implies thata2b,0, in direct contra-
diction to Eq.~2.3!. Thus, if smaller minimum bounding hy
perrectangles exist, they must be created by modifying a
of edges with disparate lengths.

An alternative hyperrectangle which changes the leng
of unequally long edges has new lengthsn111a and n
1b, with a andb of arbitrary sign and magnitude~negative
values ofa and b are less in magnitude thann11 and n,
respectively!. As above, an equality between the two are
can be established, which, after rearrangement, gives

~b1a!n52a~11b!. ~2.4!

If the new surface area is to be smaller than the originab
1a must be negative. Thus, the condition ona andb from
Eq. ~2.4! becomes

a~11b!.0, ~2.5!

sincen.0. If a.0, b.21 from Eq. ~2.5!, andb,0 if b
1a,0. But b must take an integer value and hence no
n
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lution is possible ifa.0. If a,0, b,21 from Eq. ~2.5!.
Solving for a in Eq. ~2.4! gives

a5
2bn

n111b
,0. ~2.6!

Now n111b.0 by definition, so Eq.~2.6! implies thatb
.0. Thus, no solution exists whena is less than zero. There
fore, whenN5(n11)d2 ini , the hyperrectangle withd2 i
sides of lengthn11 andi sides with lengthn is the smallest
minimal bounding hyperrectangle. Since the monomers co
pletely fill this hyperrectangle, any arrangement of mon
mers within the hyperrectangle produces the same sur
area. Thus, chains withN5(n11)d2 ini monomers make the
maximum number of contacts when they fill these small
minimal bounding hyperrectangles.

B. Cross-back spirals

Section II A requires that an optimized walk ind dimen-
sions grow from one hypercubic configuration withnd

monomers to the next larger one with (n11)d monomers. In
order to create a hypercube withn11 monomers per side
from one withn monomers per side, one must complete
cover d faces whose normals are mutually orthogonal.
addition, the walk should also pass through hyperrectan
filling configurations whenN5(n11)d2 ini . The growth
process, therefore, completely coats one face at a time. T
the optimized walk grows by covering sequentially chos
adjacent orthogonal faces, passing through the requisite
termediate hyperrectangular configurations between a hy
cube and the next larger hypercube.

One putative candidate for an optimized walk is the cro
back spiral. This spiral passes through hyperrectangular c
figurations by placing new monomers in
(d21)-dimensional version of itself along the surface of t
previously completed hyperrectangle until the face is co
pletely coated. For example, a three-dimensional cross-b
spiral covers its faces with two-dimensional cross-back s
rals. The process of growing a cross-back spiral is illustra
in Fig. 1. To make the pattern of placement explicit, consid
the direction of the bonds in Fig. 1~a!, starting from the first
monomer~a one-by-one ‘‘square’’!. Consecutive monomer
are added right, up, and then left to generate the two-by-
square. The next layer is then constructed by adding mo
mers up, right, right, down, and down to complete then
53 square. Note that the dimer completes a 231 rectangle
and the hexamer completes a 233 rectangle.

C. Cross-back spirals are optimized walks

Now consider if, for anyN, there exists a configuration
which has more contacts than the cross-back spiral. By d
nition, the cross-back spiral obtains a hyperrectangular c
figuration whenever the number of monomersN is (n
11)d2 ini (0< i<d). As shown in Sec. II A, these hyper
rectangular configurations are representative of the only c
figurations with maximal contacts whenN5(n11)d2 ini .
Thus the proof that the cross-back spiral is an optimiz
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5842 PRE 59K. W. FOREMAN
walk is only required for chains with length intermedia
between those yielding ‘‘consecutive’’ hyperrectangular co
figurations@i.e. (n11)d2 ini,N,(n11)d2 i 11ni 21#.

For these intermediate configurations, the cross-back
ral is building on the (d21)-dimensional face of the las
completed hyperrectangle. The configuration must be c
tained within the hyperrectangle withd2 i 11 sides of
lengthn11 andi 21 sides of lengthn. Since the dimensions
of this bounding hyperrectangle are minimal, any alternat
configuration must fit within the same bounding hyperre
angle. Thus the problem simplifies to proving that no re
rangement of the surface monomers in the cross-back s
~within the same minimal bounding hyperrectangle! pro-
duces a smaller surface area. This proof proceeds in
tively, with concurrent demonstration that cross-back spir
make the maximum number of contacts in two and in hig
dimensions.

Consider cross-back spirals with (n11)d2 ini,N,(n
11)d2 i 11ni 21. The possible rearrangements of the surfa
monomers~ignoring connectivity constraints! may involve
some combination of monomers on the incomplete face
monomers from previously completed faces. Rearran
ments of only monomers from the incomplete face can
create more contacts since the arrangement of monome
the cross-back spiral provides the maximum number of c
tacts already: in two dimensions, the monomers are arran
consecutively in a straight line~the ‘‘one-dimensional cross
back spiral’’!. The only possible rearrangement of the
monomers that is different from the one-dimensional cro
back spiral~in terms of surface area! is achieved by placing
spaces between individual monomers. Clearly, each sp
introduced between monomers increases the surface are
higher than two dimensions, the arrangement of the mo
mers on the surface is a cross-back spiral ind21 dimen-
sions, which, by assumption, makes the maximum numbe
contacts. Likewise, rearrangements of only the monom
from the previously completed hyperrectangle do not cha
the surface area of the cross-back spiral at all, thus lea
the total number of contacts the same.

Rearranging combinations of monomers from incompl
and complete faces does not decrease the surface area
tive to that of the cross-back spiral, as is now shown. C
sider rearrangements where monomers are taken from
one of the completed faces. More general cases are pos
but the arguments below hold equally well for those cases
two dimensions, the monomers along both incomplete fa
should be arranged consecutively in a straight line~since
leaving spaces between monomers increases the su
area!. Both before and after rearrangement, the corner mo
mers on each face have two surfaces exposed and all o
monomers on each face have one surface exposed. T
fore, the surface area does not decrease~and in rare cases
may increase! on rearrangement.

In higher dimensions, both incomplete faces must be
arranged as (d21)-dimensional cross-back spirals, sin
these spirals, by assumption, are optimal. Assume thak1
monomers lie in the first face andk2 monomers in the secon
face. By definition, the optimal arrangement fork11k25K
bonded monomers in d21 dimensions is a
(d21)-dimensional cross-back spiral. If th
(d21)-dimensional cross-back spiral is split into multip
-
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independent~nontouching! groups of monomers, each grou
can be rearranged to form smaller~optimal! cross-back spi-
rals, but not as many monomers in the smaller clusters
be buried as deeply as in the originalK-mer structure. Thus
the optimal solution for the two incomplete faces hask1
5K monomers on one face andk250 monomers on the
other. This arrangement is unattainable since all the mo
mers cannot fit on one face. With this restriction on t
maximum size of one cluster, the optimal solution fills
many faces as possible~from largest to smallest! within the
bounding hyperrectangle and makes a cross-back s
which incompletely fills the final face with any remainin
monomers. But this solution is exactly the configuration o
tained by a cross-back spiral ind dimensions withN mono-
mers. Therefore, no rearrangement of the surface elem
can reduce the surface area of a cross-back spiral, pro
that the cross-back spiral must be an optimized walk in a
dimension.

III. CALCULATION OF THE MAXIMUM NUMBER
OF CONTACTS

A. Recursive form

The maximum number of contacts for an optimized wa
in d dimensions can be determined recursively. The o
mized walk not only proceeds from one hypercube to
next size larger hypercube, but passes throughd21 hyper-
rectangles along the way. The equation for the maxim
number of contacts for hyperrectangles~including hyper-
cubes! requires the calculation of the surface area correct
to the upper bound in Eq.~2.1!. Assume thati edges have
length n11 monomers and the remainingd2 i edges have
lengthn monomers. The surface area for a given face is
volume of the hyperrectangle@5nd2 i(n11)i # divided by
the length of the edge normal to the face~eithern or n11).
Thus, the maximum number of contacts for a walk whi
exactly fills a hyperrectangle is

mmax@N5nd2 i~n11! i ,d#

5~d21!nd2 i~n11! i2~d2 i !nd2 i 21~n11! i

2 ind2 i~n11! i 2111, ~3.1!

wheren5Int(Ad N), Int(x) is the integer portion ofx, and 0
< i ,d, i an integer. The first and last terms on the righ
hand side of Eq.~3.1! are identical to Eq.~2.1! and the first
and second of the remaining terms on the right-hand s
arise from surface corrections from faces with an orthogo
edge of lengthn andn11, respectively.

Generally, walks do not exactly fill hyperrectangles, b
have an extrak.0 monomers which partially complete
face. All but the first monomer added to the incomplete fa
contribute the maximum of one contact with the face of t
completed hyperrectangle. In addition, contacts among
monomers of the incomplete face are given by the maxim
numbermmax(k,d21) of contacts for ak monomer walk in
d21 dimensions. Combining these contributions with E
~3.1! implies that the maximum numbermmax(N,d) of con-
tacts ford>2 is given by
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mmax@N5nd2 i~n11! i1k,d#5@~d21!nd2 i~n11! i2~d2 i !nd2 i 21~n11! i2 ind2 i~n11! i 2111#1@k211d~k,0!#

1@mmax~k,d21!#, 0<k<n~d2 i 21!~n11! i

5~d21!nd2 i~n11! i2~d2 i !nd2 i 21~n11! i2 ind2 i~n11! i 21

1k1d~k,0!1mmax~k,d21!,

5~d21!nd2 i~n11! i2dnd2 i 21~n11! iF12
i

d~n11!G1k1d~k,0!1mmax~k,d21!,

~3.2!
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where the Kronecker deltad(x,y) is unity whenx5y and
zero otherwise. The Kronecker delta in Eq.~3.2! must be
included since the minimum number of contacts between
incomplete new layer and the completed old layer is ze
but k21 is negative whenk50. For d51, mmax is always
zero.

Computational algorithms can easily apply Eq.~3.2! to
tabulate the exact maximum: calculation ofmmax for 1<N
<215 and 2<d<15 takes less than half a minute on a 2
MHz Pentium PC. Nevertheless, an exact, but nonrecurs
formula is developed below in order to elucidate t
asymptotic scaling properties ofmmax with N andd.

B. Nonrecursive form and scaling properties ofmmax

Douglas and Ishinabe@5# propose the asymptotic (N
→`) scaling relation ofmmax in arbitrary dimensions to be

mmax;acN2bcN
D1cc , ~3.3a!

where D5(d21)/d, bc and cc are constants, andac5d
21 for hypercubic lattices. In addition, they propose that
arbitraryN on hypercubic lattices,

mmax'Int@~d21!N2dND11#, ~3.3b!

where Int@x# is the integer portion ofx and D5(d21)/d.
Equation~3.3b! is exact for allN in d<2 and forN5nd, n
an integer, in all dimensions. Ind53, the expression on th
right-hand side of Eq.~3.3b! provides a fairly tight upper
bound, never exceedingmmax in Eq. ~3.2! by more than three
for N,250. Yet, comparison betweenmmax(25053517,5)
from Eq. ~3.2! and the right-hand side of Eq.~3.3b! yields a
difference of 9 between the upper bound and the exact s
tion. Makingbc a function ofN such that the right-hand sid
of Eq. ~3.3b! is exact for configurations which completely fi
hyperrectangles does not significantly tighten the up
bound except for those particular configurations.

Formulating the nonrecursive exact expression formmax
elucidates potential corrections to Eq.~3.3!. Consider the
contributions from the recursive relation Eq.~3.2!. The num-
ber N of monomers is essentially broken down into tw
parts, the numberNd@5nd2 i(n11)i # of monomers which
complete a hyperrectangle ind dimensions plus the remain
ing k5N2Nd monomers which only partially complete
face ind dimensions. This decomposition then recurs fork in
d21 dimensions:N(d21) monomers complete a hyperrec
angle ind21 dimensions and (N2Nd2N(d21)) are decom-
posed in the next lower dimension. This process repeats
e
,

e,

r

lu-

r

til

either all monomers have been accounted for in higher t
one dimension~in j min.1 dimensions! or else the number o
remaining monomers is assigned to equalN1 ~and j min51),
giving the relation forN,

N5Nd1N~d21!1¯1Nj min
5 (

j 5 j min

d

Nj . ~3.4!

Substitutingkd5Nd211kd21 into Eq. ~3.2! gives the start-
ing point for the nonrecursive form

mmax~N5Nd1kd ,d!5~d21!Nd2
dNd

nd
F12

i d

d~nd11!G
1kd1d~N,Nd!1mmax~Nd211kd21 ,d21!,

~3.5!

wherend5Int(Ad Nd) and

i d5IntH ln~N/nd
d!

ln@~nd11!/nd#J .

The last term on the right-hand side of Eq.~3.5! is of the
same form as the left-hand side of Eq.~3.5!, so the collection
of similar terms from lower dimensional evaluations ofmmax
yields the preliminary nonrecursive form formmax(N,d),

mmax~N,d!5 (
j 5 j min

d H ~ j 21!Nj2
jN j

nj
F12

i j

j ~nj11!G1kj J
11, ~3.6!

where

nj5Int~Aj Nj !,

i j5IntH lnS Nj

nj
j D Y ln@~nj11!/nj #J ,

and

kj5N2(
t5 j

d

Nt .

A factor of unity in Eq.~3.6! replaces the Kronecker delta
from Eq. ~3.2!. In dimensionj min , there are no extra mono
mers, thus satisfying the nonzero condition of the Kronec
delta, while in higher dimensions, the Kronecker deltas g
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a zero, since a nonzero number of monomers remain a
filling the largest hyperrectangle. Evaluation of the sum o
kj in Eq. ~3.6! is facilitated by counting how many times
particularNx appears,x a dimension betweenj min andd. The
sum overkj is thus replaced as

(
j 5 j min

d

kj5 (
j 5 j min

d H N2(
15 j

d

N1J
5~d2 j min11!N2 (

j 5 j min

d

~ j 2 j min11!Nj .

~3.7!

Substitution of Eq.~3.7! into Eq.~3.6! followed by algebraic
rearrangement yields the simplified expression,

mmax~N,d!5~d2 j min11!N1 (
j 5 j min

d H ~ j min22!Nj2
jN j

nj

3F12
i j

j ~nj11!G J 11. ~3.8!

A trivial substitution of Eq.~3.4! for the sum overNj in Eq.
~3.8! gives the final expression formmax,

mmax~N,d!5~d21!N112 (
j 5 j min

d
jN j

nj
F12

i j

j ~nj11!G .
~3.9!

Thus,ac5(d21) andcc51 for hypercubic lattices and th
error in the estimate provided by Eq.~3.3b! arises exclu-
sively from the approximatedND surface correction term.

The exact surface area corrections to Eq.~2.1! take a
polynomial form. Typically, the optimal walk hasN mono-
mers with the restriction

Nd2 i~n11! i<N<nd2 i 21~n11! i 11. ~3.10!

By definition, Nd5nd2 i(n11)i and N(d21)<N2Nd . Ap-
plying these definitions to Eq.~3.10! provides a restriction on
N(d21) ,

N~d21!<nd2 i 21~n11! i5
Nd

n
. ~3.11!

Each correction in every lower dimension~thoughj min) has a
similar restriction as in Eq.~3.11!, i.e., Nj<N( j 11) /n( j 11) .
Now nd is of orderAd N. Thus, the order ofN in Eq. ~3.9! can
vary as

O~ND!; (
i 50

d21

O~N~d212 i !/d!;O~N~d21!/d! for large N.

~3.12!

Equation~3.12! suggests thatD5(d21)/d asymptotically,
and confirmation of this exact asymptotic value is straig
forward. The exponentD is well estimated by assuming tha
the surface area termA(N,d)[mmax(N,d)2acN2cc scales as
ND and then taking the average of the ratio ln@A(N,d)#/ln(N)
for N@1. For d52, ^D& is 0.500002 and ford53, ^D& is
er
r

-

0.666667 which is close to the values1
2 and 2

3 from (d
21)/d. Further support forD asymptotically equaling (d
21)/d comes from an analysis using the ratio method@12#.
Since A(N,d);ND, the ratio A(N21,d)/A(N,d) goes as
(121/N)D. The best fit line through the log-log plot of th
ratio of surface area terms as a function of (121/N) givesD
as the slope. The validity of the method hinges on havingy
intercept of zero. Figure 2 displays the results of the ra
method for d53 and 303,N,313. Although scatter is
present in the plot, the variation is numerically minuscu
and they intercept is zero to within parts per million. Th
best fitting line has the equation ln(A@N21,d#/A@N,d#)
50.666665 ln(121/N), suggesting thatD5(d21)/d for d
53. Similar results are observed for other dimensions,
plying thatD5(d21)/d asymptotically in all dimensions.

A similar analysis provides the asymptotic value forbc .
The ratio A(N,d)/ND definesbc for a given N-mer in d
dimensions. Taking the average over largeN (N@1) of this
ratio provides an estimate forbc . For example, ind52 di-
mensions and for 1002,N,1012, values ofbc range from 2
to 2.1, with the average 2.0049460.00029. AsN grows
larger, the upper bound of the range grows smaller while
lower bound cannot change. Thus, the asymptotic limit m
be 2 ind52. Similar trends are observed in other dimensio
suggesting thatbc5d asymptotically. To illustrate this trend
further, consider the ratio betweenA(N,d) andA(N0 ,d) as a
function of N, where N0[nd2 i(n11)i is the number of
monomers which complete the largest possible ‘‘optimize
hyperrectangle ind dimensions with no more thanN mono-
mers. Figure 3 depicts the typical scaling of the ratio a
function of N for d.3: the log of the ratio varies linearly
with ln(N) for N0<N<N0(n11)/n21 and appears as a se
ries of nearly parallel lines with slope approximately (d
21)/d. When i 50, the slope is greater than (d21)/d and
wheni 5d21, the slope is less than (d21)/d, with a mono-
tonic decrease in between. The range of slope values
creases with increasingn, but always brackets (d21)/d.

FIG. 2. Log-log plot ofR5A(N21,3)/A(N,3) as a function of
121/N. The surface area correctionA(x,y) is the difference be-
tween Eq.~2.1! and mmax(x,y) and N is the number of monomers
The best fitting line~dashed! has slope of almost exactly23 @5(d
21)/d# and ay intercept of 0. The tight clustering of points an
zeroy intercept for plots in this and other dimensions suggests
D5(d21)/d asymptotically.
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Thus, asymptotically, the slope is (d21)/d as observed pre
viously and the asymptotic ratio obeys the relation

A~N,d!

A~N0 ,d!
5S N

N0
D ~d21!/d

, N→`, ~3.13a!

implying that

A~N,d!5dS n11

n D i /dF12
i

d~n11!GN~d21!/d, N→`.

~3.13b!

The formulation ofA(N,d) in Eq. ~3.13b! corresponds to the
form of the surface area term in Eq.~3.3a!, suggesting that
bc must bed asymptotically:

bc5 lim
n→`

dS n11

n D i /dS 12
i

d~n11! D5d. ~3.14!

Hence, the asymptotic scaling ofmmax for linear chains on
hypercubic lattices is

mmax;~d21!N2dN~d21!/d11, ~3.15!

which is essentially the right-hand side of Eq.~3.3b!. The
right-hand side of Eq.~3.3b! is used as a numerical uppe
bound formmax in MC simulations. But for small enoughN
@i.e., n;O(1)#, the lower order corrections in Eq.~3.12!
become more important~see Fig. 4!, suggesting that the
asymptotic formula Eq.~3.15! only provides correct order o
magnitude information, especially in higher dimensions.

IV. DISCUSSION

An exact formulation is developed for the maximum nu
ber mmax of intramolecular contacts in a single linear h
mopolymer of any length on hypercubic lattices of any
mension. The formulas formmax follow from a proof that a

FIG. 3. Log-log plot of

R[A~N,3!/„dnd212 i~n11! i$12 i /@d~n11!#%…
as a function ofN in d59. The points for whichnd2 i(n11)i<N
,nd212 i(n11)i 11 appear to form straight lines with slope a
proximately (d21)/d. The slope, however, is greater thand
21)/d for i 50 and monotonically decreases to less thand
21)/d for i 5d21. The range of slope values decreases an
grows.
-

-

single self-avoiding walk, the cross-back spiral~defined in
Sec. II B!, always obtains a configuration with the maximu
number of contacts. The proof begins by establishing t
any representative walk must pass through configurati
which exactly fill a hyperrectangle withi sides of lengthn
and d2 i sides of lengthn11 whenever the numberN of
monomers equalsni(n11)d2 i , with n a positive integer and
0< i<d, i an integer. Establishing these required configu
tions places fairly strong restrictions both on the poten
representative walks and on alternative configurations wi
competitive number of contacts.

The cross-back spiral is then inductively shown to be
walk with maximal contacts for any length linear chain
any dimension. Alternative configurations to the cross-ba
spiral must be bound by the same hyperrectangle as
cross-back spiral~see Sec. II A!. Further, the rearrangemen
of the cross-back spiral which have the potential to impro
the number of contacts only involve monomers on its s
face. These relatively few rearrangements are shown to y
at best the same number of contacts as the cross-
spiral: in two dimensions, the maximum number of conta
occurs when no spaces exist between any pairs of monom
along any of the faces. In higher dimensions, t

FIG. 4. Differencez between the exactmmax of Eq. ~3.2! and the
approximate Eq.~3.3b! in ~a! d53 and~b! d54 as a function ofN.
The asymptotic limit of Eq.~3.3a! is approached even though th
largest difference between the exact and approximate equation
mmax continues to grow, since the difference only grows
O(N(d22)/d). These differences make the approximation Eq.~3.3b!
only good for order of magnitude estimates ofmmax, especially in
higher dimensions.
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(d21)-dimensional cross-back spiral is assumed to be
resentative, from which it follows that the arrangement
monomers on the surface of thed-dimensional cross-bac
spiral produces the maximum number of contacts.

The construction of the cross-back spiral provides ex
recursive@Eq. ~3.2!# and nonrecursive@Eq. ~3.9!# formulas
for the maximum numbermmax(N,d) of contacts for a linear
lattice polymer withN monomers ind dimensions. The exac
scaling ofmmax with N, derived in Eq.~3.12! from Eq.~3.9!,
reveals thatmmax scales withN in a nonuniform way, de-
pending on the roughness of the surface of the cross-b
spiral. Nevertheless,mmax asymptotically takes the form

mmax~N,d!;~d21!N2dN~d21!/d11, ~4.1!

in accordance with the predictions of Douglas and Ishin
@5#. Yet, mmax frequently has significant lower order corre
tions which render Eq.~4.1! an order of magnitude uppe
bound, especially in higher dimensions. Thus, the exact
~3.2! is preferable to Eq.~4.1! in calculatingmmax for com-
parison with the number of contacts in collapsed chain c
figurations as sampled from MC simulations.

Although the cross-back spiral is representative of c
figurations with the maximum number of contacts, they
not necessarily representative of the thermodynamically
vored state. The increase in contacts lowers the internal
ergy of the system, but may incur too large an entropic p
alty, producing a configuration which does not correspond
a free energy global minimum. Nevertheless, the minim
energy structure is usually assumed to represent the equ
rium conformation in protein folding studies. For a sing
homopolymer under chain collapse conditions, this assu
tion is probably acceptable, since the permutations of ge
etries which permit the maximum number of contacts p
duce a combinatorially large number of arrangements.

The assumption about the equivalence between the gl
minimum of the internal and free energies does not neces
ily hold for systems as simple as linear random copolym
under chain collapse conditions. For these copolymers,
connectivity and excluded volume constraints remain
same, but the ‘‘chemical’’ or energetic interactions of ad
cent monomers may be completely different. For example
theHP model@16#, monomers along the chain are labeled
either noninteracting polar ‘‘P’’ monomers or as hydropho
bic ‘‘ H’’ monomers, which are attracted only to otherH’s. It
.
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is predicted that finding the maximum number of contacts
a given HP sequence on hypercubic lattices is anNP-
complete problem@17#. This prediction is quite plausible
since replacement ofH monomers in the allH homopolymer
~used in this paper! with P’s can place theP’s in the interior
of the cross-back spiral, a highly unfavorable energe
event. Reduction of this energy penalty requires large sc
rearrangement of monomers in the chain such that as m
as possible theP’s lie on the surface and theH’s are placed
in the interior. But for different sequences, the requireme
for placing these buriedP’s on the surface vary strongly with
the ordering of theP’s in the chain. That is, the sequenc
order plus connectivity constraints requires considering m
than the minimum bounding volume for the given number
H’s. In principle, theHP model may have a single lowes
energy configuration, but many other configurations with
slightly higher internal energy. For this circumstance, t
representative minimum free energy conformation may
correspond to the polymer in the single lowest energy c
formation.

Likewise, determining the minimum internal energ
structure is frequently used to predict the native states
proteins. Generally, the algorithms place hydrophobic re
dues in the interior of the protein and hydrophilic residues
the surface, all while keeping connectivity constraints sa
fied. More fine tuning is added by differentiating among t
types of hydrophobes and of hydrophiles and by approxim
ing what proclivities groups of residues have to forma he-
lices andb sheets. Consistent success using these techni
to predict the correct three-dimensional structures of prote
remains elusive. Probably, a major component missing in
analysis of protein structure is proper description of sid
chain packing@18#. As in lattice studies@19–23#, structural
detail may also lead to increased specificity and altered e
librium properties, even in simple energy functions such
Geocore @24,25#, but, most likely, a more sophisticate
method which includes entropic effects must be develo
for predicting representative native conformations.
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