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Scaling properties of maximally compact chains
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Scaling of the exact function for the number of intramolecular nonbonded contacts in a single maximally
compact linear homopolymer on hypercubic lattices is determined as a function of nNreberonomers and
dimensiond. A representative maximally compact structure is designed and an exact recursive expression for
the maximum numbem,,,, of contacts is derived from that design. The equivalent nonrecursive expression
yields the asymptotic scaling @i, as @—1)N—dN*+1, with A=(d—1)/d. Implications in polymer and
protein studies are discuss¢81063-651X99)12405-X]

PACS numbds): 05.50+q

[. INTRODUCTION lattices, but the scaling properties are not readily extractable.
On the other hand, Douglas and Ishindla propose an
Understanding the fundamental properties of macromolasymptotic scaling of,,,, with N andd. In developing this
ecules has led to advances in catalysis, drug design, and evsealing, they define an optimized walk on hypercubic lattices
manufacturing. Advances in these areas have been aided &3 a representative self-avoiding wakAW) (i.e., a repre-
part by lattice models, whose simple microscopic descripsentative lattice chajn which makes m,,, nonbonded
tions facilitate connections between molecular structure anfjearest-neighbor contacts for a linear homopolymer chain
fundamental physical properti¢d,2]. For example, struc- containingN monomers ind dimensions. Proving the exis-
tural information about the equilibrium conformations of tence of these optimized walks is tantamount to determining
single lattice chaingrepresenting proteingan be extracted, the exact form form.,,, and hence its scaling properties
at worst, by exhaustive enumeration. The lattice representggith N andd. Douglas and Ishinabe derive an exact expres-
tion of chains reduces the continuum of conformations dowrsjon for m,,, in d=2, and a tight upper bound id=3.
to an enumerable number of conformations, with the lowestneyertheless, the differences between the exact expression in
energy conformations readi[y identifiable. These lowest eng=2 and their general asymptotic expression makes confir-
ergy conformations are typically assumed to represent thgation of their postulated scaling difficult. Therefore, devel-
equilibrium state conformations under chain collapse condibpmg an asymptotic scaling function fam,,,, requires sys-
tions. Properties of pathways to these lowest energy Confo"ﬁamatically constructing an optimized walk.
mations, including the location of_ kinetic traps, can be dis- This work constructs an optimized walk in arbitrary di-
cerned[3] and the thermodynamics of the system can bemensions and determines the asymptotic scaling behavior of
calculated exacthf4]. Despite the multiple uses of lattice Muac. Section Il describes the construction of an optimized
models, the physics of single lattice chains is still incom-ya|k. Section 11 A establishes the fact that hypercubic con-
pletely understood2,5-11. _ . . . formations and certain hyperrectangular conformations must
One of the unsolved problems involving single lattice pe optained by an optimized walk. In establishing these con-
chains is how many contacts are present in structures Witfyymations, tools are developed which severely restrict the
the maximum numbem,,, of contacts and how this number nymper of alternative conformations to an optimized walk.
scales with both the numbét of monomers and the dimen- gsection 11 B details a putative construction of the optimized
siond of the lattice. The solution to this problem has mul- 4k (the cross-back spiraland Sec. I1C proves that the
tiple applications. For example, the exact form faf., May  construction in Sec. 11 B is valid by determining that the few
help determine the scaling of the free energy for compacpossible alternative structures have at best an equal number
lattice chaing12] and serves as an upper bound on the maxinf contacts. Section Il provides recursiv8ec. 11l A) and
mum number of contacts possible in random copolymersponrecursiveSec. 111 B) forms for my,,, based on the con-
although tight bounds have been independently developegyction in Sec. II. These results confirm the previously sug-
for this casg13]. Further, knowing the number of contacts gested[5] scaling of My, with N and d, as well as the

in the most compact state helps determine the speed ajgymuylas formy., in d=1—3 dimensiong14,15.
frequency with which equilibrium conformations of poly-

mers in poor solvents are sampled by Monte Carlo tech-
nigues.

The exact formulas and asymptotic scaling properties of
Mmax, hOwever, are incompletely determined. Chan and Dill  Many polymer simulations and models represent polymer
[14,15 postulate formulas fom,,,, whend=1-—3 on cubic  chains as self-avoiding walks. The chain is constructed in a

stepwise fashion. One end is placed, without loss of gener-
ality, at the origin. A step, usually of fixed length, is taken in
*FAX: (415502-4222. Electronic address: kw@maxwell.ucsf.eduan arbitrary direction, with the end point of the step demark-
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ing the location of the next monomer in the polymero-

vided the end point does not coincide with a previously

placed monomer This step and place routine is repeated

until all monomers are assigned locations. For the lattice

model considered here, each step length is exactly the dis-

tance between nearest-neighbor lattice sites and each step

can fall only along one ot lattice directions. Thus, every

monomer occupies a lattice site, with consecutive monomers

in the polymer lying on adjacent lattice sites. To make the (@)
walk self-avoiding, each lattice site contains at most one —
monomer. This paper considers only hypercubic lattices, in
which the numbee of nearest neighbors is twice the dimen-
siond. Two nonbonded monomers form a contact when they
are nearest neighbors. Although bonded monomers are adja-
cent, they are excluded when counting contacts since any
chain configuration will always incur these “contacts.”
Thus, the terminal and interior monomers in a chain on a
hypercubic lattice make at mogt—1 andz—2 contacts,
respectively (a contact in every direction except along
bonded ‘“‘contacts).

The optimized walk is defined5] as a representative
SAW which, for any numbeN of monomers ind dimen-
sions, makes the maximum numlmef,,(N,d) of contacts for (b)
a (linean lattice polymer chain. This definition implies that
for all optimized walks in dimensiod with N=k>0 mono- FIG. 1. A cross-back spiral witie) N=9 monomers ind=2
mers, the firsk monomers are always placed éxactlythe  dimensions andb) N=27 monomers ind=3 dimensions. Both
same configuration. For example, in two dimensions, a spiradpirals begin in the lower left corner and the arrows indicate the
is an optimized walKsee Fig. 1a8)]. The construction below order of monomer placement. The spiral(@ [(b)] proceeds from
systematically creates an optimized walk and derives an exne squarécubic] configuration to anothgiatN=1, 4, and 91, 8,
act formula form,,,,(N,d). and 27 monomers while passing througltnearly squarerectan-

gular configurationgat N=2 and 6[2, 4, 12, and 18monomers

To generate a cross-back spiral with fewer monomers, simply fol-

A. Required chain configurations low the arrows until the desired number of monomers has been

Before constructing an optimized walk, it is helpful to irsezg?zc:é I;?rtaenthjé t:)(eaggalI&gihrgor:gnmoer:]sef;ge cross-back spiral
consider which configurations that walk must pass through. 9 y
Douglas and Ishinabfs] find that an optimized walk with
N=n¢ (n, an integer monomers fills a-dimensional hyper- (d—1)N+1, (2.9
cube with side of lengtm monomers. This section estab-
lishes their finding as a special case of the proof that an
optimized walk withN=n%"'(n+1)" (0<i<d) monomers regardless of the configuration. The maximum number of
must fill a hyperrectangle witd—i sides of lengtm mono-  contacts for any configuration with monomers is less than
mers and with sides of lengtm+ 1 monomers. in Eg. (2.1) since some monomers are incompletely sur-

This proof is simplified by a lemma that establishes therounded by other monomers, i.e., they lie on an exposed
relationship between the maximum number of contacts possurface.
sible for a configuration and the minimal bounding hyper- Consider anN monomer configuration with the smallest
rectangle for that configuration. A minimal bounding hyper-surface area for a minimal bounding hyperrectangle with
rectangle is the smallest hyperrectangle which completelgides of lengthq,1,,...|4. Construct a second configuration
contains a configuration. These hyperrectangles must exiftom the first with a minimal bounding hyperrectangle of
for configurations with a finite number of monomers sincedimensionslq,l,,...,l;+1,..]4 by moving only one mono-
the configuration has finite extent in each of @he&imen-  mer in the first configuration. The moved monomer must lie
sions. Intuitively, minimal bounding hyperrectangles with on a (d—1)-dimensional surface on which no other mono-
larger volumes contain configurations with fewer possiblemers are present, thus exposing all faces indthel dimen-
contacts, providedll remains constant. To make this measuresions. If the moved monomer makes more contacts in the
guantitative, consider the general properties of any configusecond structure, the moved monomer cannot be bound to
ration with N monomers. No more thanN/2=dN contacts any other in the original “configuration,” an impossibility.
are possible since each monomer has at mosarest neigh- Thus, increasing the volume of the minimum bounding hy-
bors. The factor of 2 in this upper bound prevents doubleerrectangle while keepinyl constant does not permit an
counting of each contact between pairs of monomers. Corincrease in the maximum possible number of contacts, pro-
recting this upper bound for the— 1 bonds between mono- vided that the structure in the starting configuration has the
mers yields a better upper bound on the number of contactsmallest surface area possible for the first bounding hyper-
as rectangle. Therefore, minimization of the surface area of
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configurations which fit into the smallest minimum boundinglution is possible ifa>0. If a<0, b<-1 from Eg. (2.5).
hyperrectangle yields the maximum number of contacts. ~ Solving fora in Eq. (2.4) gives

It is proven here that wheN=(n+1)%"'n, 0<i=<d, the
smallest minimum bounding hyperrectangle has sided in
—i dimensions of lengtim+ 1 units and sides in the remain- —bn
ing i dimensions of length units. Assume that an alternative a= 1=
configuration also habl monomers, but that two of the di-
mensions for the bounding hyperrectangle have been
changed. If a better bounding hyperrectangle exists, morblow n+1+b>0 by definition, so Eq(2.6) implies thatb
than two dimensions may change, but this pairwise process 0. Thus, no solution exists whexnis less than zero. There-
may be repeated until no further benefit is obtained. Now thdore, whenN=(n+1)?"'n', the hyperrectangle witil—i
two side lengths that changed may Agboth in the direc- sides of lengtm+1 andi sides with lengti is the smallest
tions initially with eithern+1 monomers on monomers or Minimal bounding hyperrectangle. Since the monomers com-
B) one along a side initially witm monomers and the other pletely fill this hyperrectangle, any arrangement of mono-
along a side initially withn+1 monomers. mers within the hyperrectangle produces the same surface

If the two edges to be changed are initially of the samearea. Thus, chains wit=(n+1)?"'n' monomers make the
lengtht (=n or n+1), then the new bounding edges havemaximum number of contacts when they fill these smallest
lengthst+a andt—b, a, b=0, b<t. Since a smaller total Minimal bounding hyperrectangles.
surface area for the bounding hyperrectangle is desired, the
area of the original square is required to be greater than the
corresponding area of the new rectangle B. Cross-back spirals

0. (2.6

Section Il A requires that an optimized walk ¢hdimen-
t2=(t+a)(t—b). (2.2) sions grow from one hypercubiq confidguration witif!
monomers to the next larger one with-{ 1) monomers. In

The total volume of the new hyperrectangle cannot be lesgrder to create a hypercube witht- 1 monomers per side
than that of the original, since not all of the monomers wouldfom one withn monomers per side, one must completely
fit in the new hyperrectangle otherwise. This restrictioncover d faces whose normals are mutually orthogonal. In

forces the equality to hold in Eq2.2). Algebraic rearrange- 2ddition, the walk should also pass through hyperrectangle-
ment of Eq.(2.2) gives filling configurations whenN=(n+1)4"'n'. The growth

process, therefore, completely coats one face at a time. Thus,
the optimized walk grows by covering sequentially chosen
ab adjacent orthogonal faces, passing through the requisite in-
T = (a—h)=0, (2.39y  termediate hyperrectangular configurations between a hyper-
cube and the next larger hypercube.

One putative candidate for an optimized walk is the cross-
back spiral. This spiral passes through hyperrectangular con-
W‘?fgurations by placing new monomers in a

?d— 1)-dimensional version of itself along the surface of the
previously completed hyperrectangle until the face is com-
letely coated. For example, a three-dimensional cross-back
piral covers its faces with two-dimensional cross-back spi-
rals. The process of growing a cross-back spiral is illustrated
h Fig. 1. To make the pattern of placement explicit, consider

+b, with a andb of arbitrary sign and magnitud@egative tmhgno(l)lrn(?(catrgno(;fet_r;)e;_k;(:]r;df,slgul;%)(,:a)ég,rt]asglgl?tiflrg n%ér;]e()rf];rz:s

values _ofa andb are less in magmtude tham+1 andn, are added right, up, and then left to generate the two-by-two
respectively. As above, an equality between the two areassquare. The next layer is then constructed by adding mono-
can be established, which, after rearrangement, gives

mers up, right, right, down, and down to complete the
=3 square. Note that the dimer completes>a2rectangle
and the hexamer completes &3 rectangle.

where the inequality in Eq2.3) is permitted sinceb/t is
non-negative. For the new hyperrectangle to have a small
surface area, it must have a net loss in total length of the t
changed sides. This implies that-b<0, in direct contra-
diction to Eq.(2.3). Thus, if smaller minimum bounding hy-
perrectangles exist, they must be created by modifying a pa@
of edges with disparate lengths.

of unequally long edges has new lengths 1+a andn

(b+a)n=—a(1+b). (2.9
If the new surface area is to be smaller than the origibal, C. Cross-back spirals are optimized walks
+a must be negative. Thus, the condition amandb from Now consider if, for anyN, there exists a configuration
Eq. (2.4) becomes which has more contacts than the cross-back spiral. By defi-

nition, the cross-back spiral obtains a hyperrectangular con-
figuration whenever the number of monomersis (n
a(1+b)>0, (25  +1)4'n' (0<i=d). As shown in Sec. Il A, these hyper-
rectangular configurations are representative of the only con-
sincen>0. If a>0, b>—1 from Eq.(2.5), andb<0 if b  figurations with maximal contacts whel=(n+1)%"'n'.
+a<0. Butb must take an integer value and hence no soThus the proof that the cross-back spiral is an optimized
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walk is only required for chains with length intermediate independentnontouching groups of monomers, each group
between those yielding “consecutive” hyperrectangular con-can be rearranged to form small@ptimal) cross-back spi-
figurations[i.e. (n+1)4 'n'<N<(n+1)4"""1n' 1] rals, but not as many monomers in the smaller clusters can

For these intermediate configurations, the cross-back spphe buried as deeply as in the origin&imer structure. Thus,
ral is building on the §—1)-dimensional face of the last the optimal solution for the two incomplete faces Has
completed hyperrectangle. The configuration must be con=K monomers on one face arig=0 monomers on the
tained within the hyperrectangle witd—i+1 sides of other. This arrangement is unattqlnablt_a smce_al_l the mono-
lengthn+1 andi — 1 sides of lengtm. Since the dimensions Mers cannot fit on one face. With th_|s restriction on the
of this bounding hyperrectangle are minimal, any alternativén@ximum size of one cluster, the optimal solution fills as
configuration must fit within the same bounding hyperrect-many faces as possiblérom largest to smalleptithin the
angle. Thus the problem simplifies to proving that no rearounding hyperrectangle and makes a cross-back spiral
rangement of the surface monomers in the cross-back spiréfhich incompletely fills the final face with any remaining
(within the same minimal bounding hyperrectangfgo-  Monomers. But this solutl(_)n is e>_(actly _the conflguratlon ob-
duces a smaller surface area. This proof proceeds indué@ined by a cross-back spiral thdimensions witiN mono-
tively, with concurrent demonstration that cross-back spiraldners. Therefore, no rearrangement of the surface elements
make the maximum number of contacts in two and in highe@n reduce the surface area of a cross-back spiral, proving
dimensions. that the cross-back spiral must be an optimized walk in any

Consider cross-back spirals witm{1)d~n'l<N<(n  dimension.
+1)4In1"1 The possible rearrangements of the surface
monomers(ignoring connectivity constraintsmay involve lll. CALCULATION OF THE MAXIMUM NUMBER
some combination of monomers on the incomplete face and OF CONTACTS
monomers from previously completed faces. Rearrange-
ments of only monomers from the incomplete face cannot
create more contacts since the arrangement of monomers in The maximum number of contacts for an optimized walk
the cross-back spiral provides the maximum number of conin d dimensions can be determined recursively. The opti-
tacts already: in two dimensions, the monomers are arrangefiized walk not only proceeds from one hypercube to the
consecutively in a straight lingéhe “one-dimensional cross- Next size larger hypercube, but passes throdigtiL hyper-
back spiral). The only possible rearrangement of theserectangles along the way. The equation for the maximum
monomers that is different from the one-dimensional crosshumber of contacts for hyperrectangléscluding hyper-
back spiral(in terms of surface argas achieved by placing cubes requires the calculation of the surface area correction
spaces between individual monomers. Clearly, each spad@ the upper bound in Eq2.1). Assume thai edges have
introduced between monomers increases the surface area.lfngthn+1 monomers and the remainin-i edges have
higher than two dimensions, the arrangement of the mondengthn monomers. The surface area for a given face is the
mers on the surface is a cross-back spiratiinl dimen- Vvolume of the hyperrectangle=n®"'(n+1)'] divided by
sions, which, by assumption, makes the maximum number dhe length of the edge normal to the fa@ithern orn+1).
contacts. Likewise, rearrangements of only the monomerghus, the maximum number of contacts for a walk which
from the previously completed hyperrectangle do not changéxactly fills a hyperrectangle is
the surface area of the cross-back spiral at all, thus leaving
the total number of contacts the same.

Rearranging combinations of monomers from incomplete

A. Recursive form

Mmal N=n%"1(n+1)',d]

and complete faces does not decrease the surface area rela- =(d—1)n%"i(n+1) = (d—i)n® " "L(n+1)
tive to that of the cross-back spiral, as is now shown. Con- _ _
sider rearrangements where monomers are taken from only —ind '(n+1)""1+1, (3.1

one of the completed faces. More general cases are possible,
but the arguments below hold equally well for those cases. In
two dimensions, the monomers along both incomplete facegheren= Int(YN), Int(x) is the integer portion ok, and 0
should be arranged consecutively in a straight liplice  <i<d, i an integer. The first and last terms on the right-
leaving spaces between monomers increases the surfaband side of Eq(3.1) are identical to Eq(2.1) and the first
area. Both before and after rearrangement, the corner monacand second of the remaining terms on the right-hand side
mers on each face have two surfaces exposed and all otharise from surface corrections from faces with an orthogonal
monomers on each face have one surface exposed. Therdge of lengtm andn+ 1, respectively.
fore, the surface area does not decre@sw®l in rare cases Generally, walks do not exactly fill hyperrectangles, but
may increasgon rearrangement. have an extr&k>0 monomers which partially complete a
In higher dimensions, both incomplete faces must be reface. All but the first monomer added to the incomplete face
arranged as d—1)-dimensional cross-back spirals, since contribute the maximum of one contact with the face of the
these spirals, by assumption, are optimal. Assume khat completed hyperrectangle. In addition, contacts among the
monomers lie in the first face akg monomers in the second monomers of the incomplete face are given by the maximum
face. By definition, the optimal arrangement for+k,=K numberm,,,(k,d—1) of contacts for & monomer walk in
bonded monomers in d—1 dimensions is a d-1 dimensions. Combining these contributions with Eq.
(d—1)-dimensional cross-back spiral. If  this (3.1 implies that the maximum numben,,,(N,d) of con-
(d—1)-dimensional cross-back spiral is split into multiple tacts ford=2 is given by



PRE 59 SCALING PROPERTIES OF MAXIMALLY COMPACT CHAINS 5843

Mmal N=n4"(n+ 1) +k,d]=[(d—1)n% (n+1) = (d—i)n? " "(n+1) —in® I(n+1) "1+ 1]+[k—1+ 8(k,0)]
+[Mmaik,d—1)], 0<k=n@"1"Y(n+1)!
=d-1)n?(n+1)'—(d—i)n? " Yn+1)—ind(n+ 1)1
+k+ 8(K,0) + Mpya(k,d— 1),

=(d-1)n% " (n+1)'—dn?"""Y(n+1)'| 1- m +k+ 8(k,0) + Mpa(k,d— 1),

(3.2

where the Kronecker delta(x,y) is unity whenx=y and either all monomers have been accounted for in higher than
zero otherwise. The Kronecker delta in E§.2) must be one dimensiorin j,i,>1 dimensionsor else the number of
included since the minimum number of contacts between theemaining monomers is assigned to eghial (and j ,i,=1),
incomplete new layer and the completed old layer is zerogiving the relation for,

but k—1 is negative wherk=0. Ford=1, m,,, iS always g

zero.

Computational algorithms can easily apply E§.2) to N:Nd+N(dfl>+"'+Nimin:j§_ N; . 3.4
tabulate the exact maximum: calculation rof,,, for 1<N m

<2' and 2<d=15 takes less than half a minute on a 200Supstitutingky=Ng_;+Kq_; into Eqg. (3.2 gives the start-
MHz Pentium PC. Nevertheless, an exact, but nonrecursivéng point for the nonrecursive form

formula is developed below in order to elucidate the

asymptotic scaling properties af,,,, with N andd. dNy

g
mma)(N:Nd‘f‘ kd ,d):(d_l)Nd_ n—d

B d(ng+1)

+Kg+ O(N,Ng) + My Ng_1+Kkg-1,d—1),

1

B. Nonrecursive form and scaling properties ofm,,a

Douglas and Ishinabg5] propose the asymptoticN(

—o) scaling relation ofm,,,, in arbitrary dimensions to be 3.9
Mmax~a:N—bNA+ ¢, (3339  Whereng=Int(YNg) and

where A=(d—1)/d, b, and ¢, are constants, and.=d i —Int In(N/ng?)

—1 for hypercubic lattices. In addition, they propose that for d In[(ng+1)/ng]]"

arbitrary N on hypercubic lattices, ) ] )
The last term on the right-hand side of E.5 is of the

Mmae= N (d—1)N—dN*+1], (3.3b  same form as the left-hand side of E§.5), so the collection
of similar terms from lower dimensional evaluationsnaf,,

where Infx] is the integer portion ok andA=(d—1)/d.  yields the preliminary nonrecursive form far,,(N,d),
Equation(3.3b) is exact for allN in d<2 and forN=n¢, n

an integer, in all dimensions. k=3, the expression on the d ) JN;
right-hand side of Eq(3.3b provides a fairly tight upper mmax(Nid):_Z {(J_l)Nj_ e +kj]
bound, never exceeding,,.«in Eq. (3.2) by more than three 1= Jmin :
for N<250. Yet, comparison between,,(250=3°+7,5) +1, (3.6
from Eg.(3.2) and the right-hand side of E€3.3b yields a
difference of 9 between the upper bound and the exact solwhere
tion. Makingb,. a function ofN such that the right-hand side ,
of Eqg. (3.3b is exact for configurations which completely fill nj= '”t(J\/N—i)v
hyperrectangles does not significantly tighten the upper
bound exce_pt for those partic_ular configurations_. P Int{ |n(ﬂi_) / In[(n-+1)/n-]},
Formulating the nonrecursive exact expression gy, ! n’ ! !
elucidates potential corrections to E(.3). Consider the
contributions from the recursive relation E§.2). The num- and
ber N of monomers is essentially broken down into two g
parts, the numbeNg[=n%"(n+1)'] of monomers which k=N-S N
complete a hyperrectangle thdimensions plus the remain- I =
ing k=N—Ny monomers which only partially complete a
face ind dimensions. This decomposition then recurskiar A factor of unity in Eq.(3.6) replaces the Kronecker deltas
d—1 dimensionsN4_;) monomers complete a hyperrect- from Eq. (3.2). In dimensionj .,;,, there are no extra mono-
angle ind—1 dimensions andN—Ny—N(4_1)) are decom- mers, thus satisfying the nonzero condition of the Kronecker
posed in the next lower dimension. This process repeats untilelta, while in higher dimensions, the Kronecker deltas give

i
1——1
j(nj+1)




5844

a zero, since a nonzero number of monomers remain after o
filling the largest hyperrectangle. Evaluation of the sum over

kj in Eq. (3.6) is facilitated by counting how many times a
particularN, appearsx a dimension betweep,,;, andd. The
sum overk; is thus replaced as

d
v
1=j
d
=(d=jmntN= 2 (= imntDN;.

1= Imin

d
>
= Imin

d
DI
1= min

i

3.7

Substitution of Eq(3.7) into Eq.(3.6) followed by algebraic
rearrangement yields the simplified expression,

d

P , IN;
mmax(Nyd)—(d_Jmin"'l)N"'_ 2 (Jmin_z)Nj_ n.
j=] min i

X|1———|l+1. 3.8

A trivial substitution of Eq.(3.4) for the sum oveN; in Eq.
(3.9) gives the final expression fan,,,y,

d
Mma N,d)=(d—1)N+1— >

j=] min

i:
_ J
J(nj+1)

N;
n;

(3.9

Thus,a.=(d—1) andc.=1 for hypercubic lattices and the
error in the estimate provided by E@.3b arises exclu-
sively from the approximateN* surface correction term.

The exact surface area corrections to E2.1) take a
polynomial form. Typically, the optimal walk had mono-
mers with the restriction

N '(n+1)'<sNsn?"""Y(n+1)*L

(3.10
By definition, Ng=n?""(n+1)" and N¢g_1y<N—Ng4. Ap-
plying these definitions to Eq3.10 provides a restriction on
Ng—

(d—1)»

) N
Ng—1y<n®'"(n+ 1)'=Fd.

(3.1)

Each correction in every lower dimensi¢thoughj ,i,) has a
similar restriction as in Eq(3.11), i.e., Nj<Nj1)/N(j+1)-
Now ng is of orderd/N. Thus, the order oK in Eqg. (3.9 can
vary as

d-1
O(NA)~26 O(N@-1=0/dy . o(N@-D/d) for large N.

(3.12
Equation(3.12 suggests that =(d—1)/d asymptotically,
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FIG. 2. Log-log plot ofR=A(N-1,3)/A(N,3) as a function of
1-1/N. The surface area correctioh(x,y) is the difference be-
tween Eq.(2.1) and m,,,(X,y) andN is the number of monomers.
The best fitting line(dashedl has slope of almost exactl%[z(d
—1)/d] and ay intercept of 0. The tight clustering of points and
zeroy intercept for plots in this and other dimensions suggests that
A=(d—1)/d asymptotically.

0.666667 which is close to the valugsand % from (d
—1)/d. Further support forA asymptotically equalingd
—1)/d comes from an analysis using the ratio methbd].
Since A(N,d)~N?, the ratio A(N—1,d)/A(N,d) goes as
(1—1/N)2. The best fit line through the log-log plot of the
ratio of surface area terms as a function of{1/N) givesA
as the slope. The validity of the method hinges on havigg a
intercept of zero. Figure 2 displays the results of the ratio
method ford=3 and 36<N<313. Although scatter is
present in the plot, the variation is numerically minuscule
and they intercept is zero to within parts per million. The
best fitting line has the equation WN—1,d]/A[N,d])
=0.666665 In(+1/N), suggesting thah=(d—1)/d for d
=3. Similar results are observed for other dimensions, im-
plying thatA=(d—1)/d asymptotically in all dimensions.

A similar analysis provides the asymptotic value bgyr.
The ratio A(N,d)/N* definesb, for a given N-mer in d
dimensions. Taking the average over laljg(N> 1) of this
ratio provides an estimate fdr,. For example, ird=2 di-
mensions and for 168N< 107, values ofb, range from 2
to 2.1, with the average 2.00494.00029. AsN grows
larger, the upper bound of the range grows smaller while the
lower bound cannot change. Thus, the asymptotic limit must
be 2 ind=2. Similar trends are observed in other dimensions
suggesting thab,=d asymptotically. To illustrate this trend
further, consider the ratio betwe&{N,d) andA(N,,d) as a
function of N, where Ng=n®"'(n+1)" is the number of
monomers which complete the largest possible “optimized”
hyperrectangle i dimensions with no more tha mono-
mers. Figure 3 depicts the typical scaling of the ratio as a
function of N for d>3: the log of the ratio varies linearly
with In(N) for Ng<N=<Ng(n+1)/n—1 and appears as a se-

and confirmation of this exact asymptotic value is straightries of nearly parallel lines with slope approximatelgt (
forward. The exponem is well estimated by assuming that —1)/d. Wheni=0, the slope is greater thad{ 1)/d and

the surface area terfy(N,d)=m,,,(N,d)—a.N—c. scales as wheni=d—1, the slope is less thawl - 1)/d, with a mono-

N2 and then taking the average of the ratipA¢N,d)J/In(N)  tonic decrease in between. The range of slope values de-
for N>1. Ford=2, (A) is 0.500002 and fod=3, (A) is  creases with increasing, but always bracketsd-1)/d.
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FIG. 3. Log-log plot of
R=A(N,3)/(dn%" 1" (n+1){1—i/[d(n+1)]})
as a function ofN in d=9. The points for whicm?~'(n+1)'<N
<n9==i(n+1)*! appear to form straight lines with slope ap-
proximately d—1)/d. The slope, however, is greater thad (
—1)/d for i=0 and monotonically decreases to less thah (
—1)/d for i=d—1. The range of slope values decreasesnas

grows.

Thus, asymptotically, the slope id{ 1)/d as observed pre-
viously and the asymptotic ratio obeys the relation

A(N,d) [ N)@-brd ,
m = (N_o) , N—oo, (3.133 5000 10000 15000 20000 25000 30000 35000
implying that FIG. 4. Differencel between the exaehy,, of Eq. (3.2 and the
approximate Eq(3.3b in (a) d=3 and(b) d=4 as a function of.
i/d i The asymptotic limit of Eq(3.33 is approached even though the
_ (d-1)/d . ; .
A(N,d)=d o 1- dn+ 1) N y N—oo. largest difference between the exact and approximate equations for
Mmax CONtinues to grow, since the difference only grows as

(3.130 O(N(@~2/d)  These differences make the approximation BoBb

The formulation ofA(N,d) in Eq. (3.13h corresponds to the ©nly good for order of magnitude estimatesrof,,,, especially in

form of the surface area term in E(B.3a, suggesting that higher dimensions.

b, must bed asymptotically: . - o .

¢ ymp y single self-avoiding walk, the cross-back spitdkfined in

Sec. I B, always obtains a configuration with the maximum

=d.  (3.19 number of contacts. The proof begins by establishing that
any representative walk must pass through configurations

. . . . which exactly fill a hyperrectangle withsides of lengtm

Hence, the asymptotic scaling of,. for linear chains on andd—i sides of lengtn+1 whenever the numbex of

+1 i/d
bC: limd T) (1—m

n—oo

hypercubic lattices is monomers equals'(n+1)4~", with n a positive integer and
My~ (d— 1)N—dN@-D/dy 1. (3.19 O<i=d, i an integer. Establishing these required configura-
tions places fairly strong restrictions both on the potential

which is essentially the right-hand side of E&.3b. The representative walks and on alternative configurations with a

right-hand side of Eq(3.3b) is used as a numerical upper competitive number of contacts.
The cross-back spiral is then inductively shown to be a

bound form,,, in MC simulations. But for small enoug
walk with maximal contacts for any length linear chain in

[i.e., n~0O(1)], the lower order corrections in E¢3.12) _ _ _ _ \
become more importantsee Fig. 4 suggesting that the any dimension. Alternative configurations to the cross-back

asymptotic formula E¢(3.19 only provides correct order of Spiral must be bound by the same hyperrectangle as the
cross-back spiralsee Sec. Il A Further, the rearrangements

magnitude information, especially in higher dimensions.
of the cross-back spiral which have the potential to improve
IV. DISCUSSION the number of contacts only involve monomers on its sur-
face. These relatively few rearrangements are shown to yield
An exact formulation is developed for the maximum num-at best the same number of contacts as the cross-back
ber m,,ox Of intramolecular contacts in a single linear ho- spiral: in two dimensions, the maximum number of contacts
mopolymer of any length on hypercubic lattices of any di-occurs when no spaces exist between any pairs of monomers
mension. The formulas fam,,, follow from a proof that a along any of the faces. In higher dimensions, the
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(d—1)-dimensional cross-back spiral is assumed to be reps predicted that finding the maximum number of contacts for
resentative, from which it follows that the arrangement ofa given HP sequence on hypercubic lattices is &lP-
monomers on the surface of tlikdimensional cross-back complete problen{17]. This prediction is quite plausible,
spiral produces the maximum number of contacts. since replacement ¢ monomers in the alH homopolymer
The construction of the cross-back spiral provides exactused in this papémwith P's can place thé's in the interior
recursive[Eq. (3.2] and nonrecursivgéEg. (3.9)] formulas  of the cross-back spiral, a highly unfavorable energetic
for the maximum numbem,,,,(N,d) of contacts for a linear event. Reduction of this energy penalty requires large scale
lattice polymer withN monomers ird dimensions. The exact rearrangement of monomers in the chain such that as much
scaling ofm,,, with N, derived in Eq(3.12 from Eq.(3.9, as possible th@’s lie on the surface and thd’'s are placed
reveals thaim,,,, scales withN in a nonuniform way, de- in the interior. But for different sequences, the requirements
pending on the roughness of the surface of the cross-badkr placing these burieB's on the surface vary strongly with

spiral. Neverthelesan,,,, asymptotically takes the form the ordering of theP’s in the chain. That is, the sequence
41/ order plus connectivity constraints requires considering more
Mad N,d) ~ (d—1)N—dN@" 14+ 1, (4.)  than the minimum bounding volume for the given number of

H’s. In principle, theHP model may have a single lowest

S %nergy configuration, but many other configurations with a
[5]. Yet, My, frequently has significant lower order correc- gjighty higher internal energy. For this circumstance, the
tions which render Eq(4.1) an order of magnitude upper roqresentative minimum free energy conformation may not

bounq, especially in higher d.imensions.. Thus, the exact Eocorrespond to the polymer in the single lowest energy con-
(3.2 is preferable to Eq(4.1) in calculatingmy,q, for com- ¢4 o

parison with the number of contacts in collapsed chain con- | ixewise determining the minimum internal energy

figurations as sampled from MC simulations. structure is frequently used to predict the native states of
_ Although the cross-back spiral is representative of conyoteins. Generally, the algorithms place hydrophobic resi-
figurations with the maximum number of contacts, they areyes in the interior of the protein and hydrophilic residues on
not necessarily representative of the thermodynamically fage gyrtace, all while keeping connectivity constraints satis-
vored state. The increase in contacts lowers the internal efoq More fine tuning is added by differentiating among the
ergy of the system, but may incur too large an entropic peng hes of hydrophobes and of hydrophiles and by approximat-
alty, producing a conflgL_Jr_atlon which does not correspc_md tc?ng what proclivities groups of residues have to foanhe-
a free energy global minimum. Nevertheless, the minimuM)ices andg sheets. Consistent success using these techniques
energy structure is usually assumed to represent the equilis pregict the correct three-dimensional structures of proteins
rium conformation in protein folding studies. For a single \omains elusive. Probably, a major component missing in the
homopolymer under chain collapse conditions, this assumpynaysis of protein structure is proper description of side-
tion is probably acceptable, since the permutations of geoMspain packing18]. As in lattice studie§19—23, structural
etries which permit the maximum number of contacts pro-yeail may also lead to increased specificity and altered equi-
duce a combinatorially large number of arrangements. jinrjum properties, even in simple energy functions such as
The assumption about the equivalence between the glob eocore[24,25, but, most likely, a more sophisticated

minimum of the internal and free energies does not necessafiahog which includes entropic effects must be developed
ily hold for systems as simple as linear random copolymerg,, hredicting representative native conformations.
under chain collapse conditions. For these copolymers, the

connectivity and excluded volume constraints remain the
same, but the “chemical” or energetic interactions of adja-
cent monomers may be completely different. For example, in
the HP model[16], monomers along the chain are labeled as Thanks are due to Jane Chang and Jack Douglas for help-
either noninteracting polar P’ monomers or as hydropho- ful comments, and to the U.S. DOE and the Sloan Founda-
bic “H” monomers, which are attracted only to otheis. It tion for funding.

in accordance with the predictions of Douglas and Ishinab
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